Reachable Distance Function for KNN Classification

نویسندگان

چکیده

Distance function is a main metrics of measuring the affinity between two data points in machine learning. Extant distance functions often provide unreachable values real applications. This can lead to incorrect measure points. paper proposes reachable for KNN classification. The not geometric direct-line It gives consideration class attribute training dataset when Concretely speaking, includes their center and distance. Its shape looks like “Z,” we also call it Z function. In this way, same always stronger than that different classes. Or, intraclass are closer those interclass We evaluated with experiments, demonstrated proposed achieved better performance

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustified distance based fuzzy membership function for support vector machine classification

Fuzzification of support vector machine has been utilized to deal with outlier and noise problem. This importance is achieved, by the means of fuzzy membership function, which is generally built based on the distance of the points to the class centroid. The focus of this research is twofold. Firstly, by taking the advantage of robust statistics in the fuzzy SVM, more emphasis on reducing the im...

متن کامل

Associative Classification with Knn

Associative classification usually generates a large set of rules. Therefore, it is inevitable that an instance matches several rules which classes are conflicted. In this paper, a new framework called Associative Classification with KNN (AC-KNN) is proposed, which uses an improved KNN algorithm to address rule conflicts. Traditional K-Nearest Neighbor (KNN) is low efficient due to its calculat...

متن کامل

Impact of the Sakoe-Chiba Band on the DTW Time Series Distance Measure for kNN Classification

For classification of time series, the simple 1-nearest neighbor (1NN) classifier in combination with an elastic distance measure such as Dynamic Time Warping (DTW) distance is considered superior in terms of classification accuracy to many other more elaborate methods, including k-nearest neighbor (kNN) with neighborhood size k > 1. In this paper we revisit this apparently peculiar relationshi...

متن کامل

A Novel Method for Detecting Spam Email using KNN Classification with Spearman Correlation as Distance Measure

E-mail is the most prevalent methods for correspondence because of its availability, quick message exchange and low sending cost. Spam mail appears as a serious issue influencing this application today's internet. Spam may contain suspicious URL’s, or may ask for financial information as money exchange information or credit card details. Here comes the scope of filtering spam from legitimate em...

متن کامل

KNN-CF Approach: Incorporating Certainty Factor to kNN Classification

 Abstract—KNN classification finds k nearest neighbors of a query in training data and then predicts the class of the query as the most frequent one occurring in the neighbors. This is a typical method based on the majority rule. Although majority-rule based methods have widely and successfully been used in real applications, they can be unsuitable to the learning setting of skewed class distr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2022

ISSN: ['1558-2191', '1041-4347', '2326-3865']

DOI: https://doi.org/10.1109/tkde.2022.3185149